DEPARTMENT OF CHEMISTRY::BODOLAND UNIVERSITY

Programme Specific Outcome (PSO) of M.Sc. in Chemistry

- **PSO 1:** Acquire deep understanding to develop the problem solving skills using principles and processes of chemical sciences.
- **PSO 2:**Develop skills of extraction, estimation, preparation, separation, and characterization of materials and chemical compoundsfollowing the chemical processes and using sophisticated analytical techniques.
- **PSO 3:**Develop research and scientific writing skills through project/dissertation the fields of chemistry such as organic, inorganic, physical, polymer science, analytical, etc.
- **PSO 4:** Acquire knowledge in natural products, and biological and energy systems.
- **PSO 5**: To well-equip the students with theoretical and analytical knowledge of different branches of chemical sciences to make them fit for industry jobs.
- **PSO 6:**Theoretical knowledge gained through this course will help them to qualify national and international competitive examinations to fulfil their dreams as researcher/academician.

COURSE OUTCOME

SEMESTER-I		
Paper code	Paper Title	
CHM 101	Physical Chemistry–I	
Course	Students will be able to understand the fundamentals of equilibrium and non-equilibrium	
Outcome	thermodynamics, statistical mechanics, electrochemistry and polymers. With better	
	understanding on these topics, their problem-solving capability will improve.	
CHM 102	Organic Chemistry–I	

CHM 202	Organic Chemistry–II
	of validation of these theories.
Outcome	dynamics, catalysis, adsorption and surface chemistry and most importantly the ways/methods
Course	Students will learn about the theoretical basis of various theories of chemical kinetics, reaction
CHM 201	Physical Chemistry–II
Paper code	Paper Title
	SEMESTER-II
Outcome	
Course	Students will learn the basic about Rubber: their origin, types and some of their applications.
OP3	
CHM 106-	Basic Rubber Science
Outcome	composition and chemical processes in the day to day social life.
Course	Students will be able to understand and demonstrate the involvement of chemistry, chemical
OP2	
CHM 106-	Chemistry in Everyday Life
Outcome	chemical laboratory and industry for the design of safer processes and chemicals.
Course	Students will be able to explain and compare relationships between Green Chemistry and
OP1	
CHM 106-	Green Chemistry
Outcome	and mixtures, and implement single-step and multi-step organic synthesis.
Course	Students will be able to perform qualitative and quantitative analysis of organic compounds
CHM 105	Practical (Organic Chemistry)
Outcome	demonstrate their various applications in analyzing and interpreting experimental data.
Course	Students will be able to identify/elucidate the basis of different spectroscopic techniques, and
CHM 104	Spectroscopy-I
	structure of sonds and applications of fedox chemistry.
Course Outcome	structure of solids and applications of redox chemistry.
CHM 103	Inorganic Chemistry–I Students will be able to explain/critically examine the chemistry of chemical bonding,
CHM 102	selectivity principles and will be able to solve related problems.
Outcome	stereoelectronic factors, stereochemistry, organic reaction mechanism and reactivity &
A .	

Course	After learning the course, students will acquire the detailed knowledge on stereoselective	
Outcome	synthesis, oxidation and reduction reactions, pericyclic reactions and organic photochemistry.	
CHM 203	Inorganic Chemistry–II	
Course	Students will be able to apply their knowledge of inorganic and solid state chemistry in	
Outcome	explaining, interpreting and critically examining bonding/structure/reactivity of metal complexes and lanthanides and actinides.	
CHM 204	Spectroscopy–II	
Course	Students will be able to explain the basic working principle of various spectroscopic	
Outcome	techniques and will be able to apply their knowledge in analytical purposes and interpretation of data.	
CHM 205	Practical (Inorganic Chemistry)	
Course	Students will be able to demonstrate experimental skills encompassing set-up of experiments,	
Outcome	synthesis, characterization of different inorganic materials, and usage of analytical	
	equipments.	
CHM 206-	Renewable Energy	
OP1		
Course	After learning the course, students will acquire the detailed knowledge on renewable energy,	
Outcome	conversion processes and applications.	
CHM 206-	Petrochemical Process Technology	
OP2		
Course	After learning the course, students will acquire the detailed knowledge on physicochemical	
Outcome	properties petroleum products and their technological processes.	
CHM 206-	Polymer and Environment	
OP3		
Course	Students will be able to know about the use of environmentally friendly polymers, their	
Outcome	source, potential applications and management in minimizing their negative effect on	
	environment.	
	SEMESTED III	
SEMESTER-III		
Paper code	Paper Title	
CHM 301	Quantum Chemistry	
Course	Students will be able to know the several theories and methods of quantum chemistry and	

their successful applications in calcuation of various theoretical parameters, e.g. energy etc.

Outcome

CHM 302	Analytical Techniques
Course	Students will be able to explain/demonstrate the application of different analytical techniques
Outcome	in chemistry.
CHM 303	Environmental Chemistry
Course	Students will be able to demonstrate an understanding of environmental chemistry viz. air,
Outcome	water and soil chemistry and identify the relationships between atmosphere, solar radiation
	and ozone formation.
CHM 304	Advanced Topics in Chemistry
Course	After learning the course, students will acquire the detailed knowledge on nanochemistry,
Outcome	supramolecular chemistry, advanced topics of pericyclic reactions and will be able to
	characterize and interpret organic molecules using advanced level of NMR techniques.
CHM 305	Practical (Physical Chemistry)
Course	The students will be able to understand physical chemistry from experimental point of view.
Outcome	Moreover, they will learn some modern methods of analysis required in different area of
	research.
CHM 306-	Biochemistry
E1	
Course	Students will be able to demonstrate and represent the different chemical and physical
Outcome	processes of living organisms.
CHM 306-	Computational Quantum Chemistry
E2	
Course	After learning the course, students will acquire the detailed knowledge on computational
Outcome	quantum chemistry and its applications.
CHM 306-	Solid State Chemistry
E3	
Course	After learning the course, students will acquire the detailed knowledge on theories, reactions
Outcome	and properties solid state and materials.
CHM 306-	Applied Electrochemistry
E4	
Course	The students will acquire the detailed knowledge and will be able to demonstrate
Outcome	electrochemical energy conversion and storage processes and surface modification techniques.
CHM 306-	Supramolecular Chemistry
C111V1 300-	Supramolecular Chemistry

Course	The students will acquire the detailed knowledge and will be able to demonstrate principles,
Outcome	properties and applications of supramolecular chemistry.
	SEMESTER-IV
CHM 401	Polymer Science
Course	The students will acquire the detailed knowledge about polymers, their synthesis, processing
Outcome	abilities, properties, structure-property relationship to their applications
CHM 402	Natural Products and Heterocyclic Chemistry
Course	After learning the course, students will be able to identify different types of natural products,
Outcome	their sources and applications. Students will also be able to describe important methods of
	extraction, their synthesis, and biosynthesis processes.
CHM 403	Transition Metals and Inorganic Materials
Course	Students will be able to explain/describe/rationalize molecular structure and bonding using
Outcome	group theory.
CHM 404	Catalysis
Course	Students will be able to describe the theories and mechanisms of heterogeneous catalysis, and
Outcome	demonstrate the applications of the materials for industrial purposes.
CHM 405	Organic Synthesis
Course	Students will be able to describe and design organic synthetic strategies.
Outcome	
CHM 406	Organometallics and Photoinorganic Chemistry
Course	Students will be able to discuss/explain the synthesis, structure, & reactivity of organometallic
Outcome	compounds, reagents, and demonstrate their uses in industrially important reactions.
CHM 407	Chemistry of Surfactants
Course	The students will be able to demonstrate the chemistry of surfactants including their
Outcome	importance and applications.
CHM 408	Bioorganic and Medicinal Chemistry
Course	Students will be able to identify, compare and explain aspects related to biochemical
Outcome	processes, drug design and mode of action of drug.
CHM 409	Bioinorganic Chemistry
Course	Students will be able to classify/critically examine supramolecular systems, explicate the
Outcome	underlying principles, with regard to concepts of molecular recognition, self-assembly,
	catalysis, and devices. They will also learn the role of metal ions in functioning of biological

	systems, toxicity due to metal ions, the role in a diseases and therapy.
CHM 410	Project/Dissertation
Course	The students would be able to demonstrate and plan a scientific research, and implement it
Outcome	within a reasonable time-frame. It is expected that after completing this project/dissertation,
	students will learn to work independently and how to keep accurate/readable record of their
	experimental works. In addition, students will be able to handle laboratory equipment and
	chemicals, and utilize sophisticated instruments for analysis, data collection and interpretation.
	Moreover, students will learn how to perform literature review and will be able to critically
	examine research articles, and improve their scientific writing/communication.